Mar 30 2020

In finance, the Black–Litterman model is a mathematical model for portfolio allocation 1, No. 2: pp. · Black F. and Litterman R.: Global Portfolio Optimization, Financial Analysts Journal, September , pp. 28–43 JSTOR The Black-Litterman asset allocation model is an extension of pricing model ( CAPM) and Harry Markowitz’s mean-variance optimization theory. in a global benchmark such as MSCI World as a neutral starting point, asset. The Black-Litterman model was made as an improvement of the . Robert Litterman stated in their article Global Portfolio Optimization that ” asset allocation.

Author: Vudojora Fenrijar
Country: United Arab Emirates
Language: English (Spanish)
Genre: Video
Published (Last): 5 December 2011
Pages: 376
PDF File Size: 15.19 Mb
ePub File Size: 20.50 Mb
ISBN: 340-6-37779-362-1
Downloads: 45139
Price: Free* [*Free Regsitration Required]
Uploader: Faum

From Wikipedia, the free encyclopedia. While Modern Portfolio Theory is an important theoretical advance, its application has universally encountered a problem: For example, a globally invested pension fund must choose how much to allocate to each major country or region.

In financethe Black—Litterman model is a mathematical model for portfolio allocation developed in at Goldman Sachs by Fischer Black and Robert Littermanand published in Black—Litterman litteran this problem by not requiring the user to input estimates of expected return; instead it assumes that the initial expected returns are whatever is required so that the equilibrium asset allocation is equal to what we observe in the porfolio.


Views Read Edit View history.

By using this site, you optimizzation to the Terms of Use and Privacy Policy. Asset allocation is the decision faced by an investor who must choose how to allocate their portfolio across a few say six to twenty asset classes.

There was a problem providing the content you requested

From this, the Black—Litterman method computes the desired mean-variance efficient asset allocation. In principle Modern Portfolio Theory the mean-variance approach of Markowitz offers a solution to this problem once the expected returns and covariances of the assets are known.

It seeks to overcome problems that institutional investors have encountered in applying modern portfolio theory in practice. In general, when there are portfolio constraints – for example, when short sales are not allowed – the easiest way to find the optimal portfolio is to use the Black—Litterman model to generate the expected returns for the assets, and then use a mean-variance optimizer to solve the constrained optimization problem.


This page was last edited on 16 Februaryat The model starts with the equilibrium assumption that the asset allocation of a representative agent should be proportional to the market values of the available assets, and then modifies that to take into account the ‘views’ i.

The user is only required to state how his assumptions about expected portfoliio differ ltiterman the markets and to state his degree of confidence in the alternative assumptions.

Retrieved from ” https: